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For this configuration and ¢ =4, we have obtained

Zoo = 4775Q,  Zo = 127.2Q.

To have an idea of the precision of the potential calculation, we have
calculated the capacitance per unit length of the stripline by appli-
cation of Gauss' theorem for two surfaces. The first, near the strip,
gives Cj, and the second, near the external walls of the box, gives Co.
We call relative precision of the calculation the ratio [C;~Cy]/Cr.

Table I gives data for a simple line when we stop the calculation
if the highest difference between the potentials of the corresponding
nodes for two successive iterations is smaller than a fixed value, called
“testy.”

Table 11 gives data for a microstrip coupler. Here, Cr is the capac-
itance calculated for a surface surrounding one of the two strips, for
instance, the positively charged one in the odd mode. Cy is calculated
for a surface containing all the other conductors.

Table 111 gives results for the same number of iterations (36) in
the case of the coupler with e, =4.

Conversely, in Table IV, we give the results when we stop the
computation if the “relative precision” is smaller than a fixed value
called “test,.” .

It should be noted that for very small differences (a few percent)
in the value of «, the number of iterations and the precision are per-
ceptibly different. This effect has been observed and justified by
some authors [20]-[24].

In Table V, as an illustration of our method against the Gauss—
Seidel one, we give the data as for Table IV, with the best accelerat-
ing factor and without the accelerating factor.

IV. ConcCLUSION

From these results, it can be seen that the approximations made
for the calculation of an accelerating factor are very good. In each
case we have tested, we have obtained an important amelioration
either in the computational time or in precision of calculation, often
for both, .

The precision of the finite-differences method is sufficiently good,
as can be seen by comparison with results given by others.

We have used two types of results, The first ones are those ob-
tained by Cohn’s formulas [11]. In our program, making ¢ =1 and
N>»M, L, N;, we must approach Cohn’s case.

For example, we have obtained the following:

Zyo Zoe Zoo Zoe

(calcu- (calcu- (Cohn) (Cohn)
M N K L N, lated) lated)
21 101 9 5 6 43.3 143.7 45.6 148.8
21 101 9 5 16 17.7 73.6 18.1 74.8
51 101 24 5 6 46.5 239.2 47.9 249.3
51 101 24 5 16 19.7 153 20.1 158.2
53 132 24 7 18 24.7 137.5 25 143.8

We have made 17 comparisons between our results and those cal-
culated using Cohn’s formula. The mean accuracy of these results is
about 2 percent.

Second, experimental results have been obtained by the Centre
National d’Etudes des Télécommunications, Lannion, France. Com-
parison with these results gives an accuracy of 4 or 5 percent. For
example, we have the following:

Zoo Zoe Zoo Zoge
(calcu- (calcu-  (experi- (experi-
M N K L Ny lated) lated) mental) mental)
18 44 9 2 6 16.15 16.17
72 88 35 4 19 11 115 10.05 111.3

The only point which can be noted in opposition to this method is
that for realistic problems, a computer of great capacity is necessary.

Finally, the finite-differences method appears in many aspects to
be the most simple to use for the calculations of microstrip parameters
in the TEM approximation.
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This work allows a reduction of the computational time necessary
in the finite-differences method using the SOR technique of 20-A0
percent according to the desired accuracy.
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On Uniform Multimode Transmission Lines
CLAYTON R. PAUL

Abstract-In a recent short paper [1], a method for constructing
solutions to the classical uniform multiwire transmission-line equa-
tions was given which was intended to include the case of partial
eigenvalue degeneracy. This development appears to be incorrect
and a correct development will be given. In addition, a complete
method for constructing the matrix chain parameters of a section of
line will be presented.

We will consider # uniform transmission lines described by the
matrix partial differential equations

ow(x, t) R _ ?i(fil_)

— = Ri(x,f) — L by (1a)

A0 o, g — D (1b)
dx

where v(x, £) and i(x, ¢) are # X1 vector functions of the transmission-
line voltages with respect to some reference conductor (usually a
ground plane) and currents, respectively, as a function of distance %
along the line and time 7. The matrices R, L, G, and C are nXn
matrices independent of x. Nonuniform transmission lines would have
R,G, L, and C as functions of x. Usually, R is diagonal and G, L, and
C are symmetric (for lines emersed in linear, isotropic media). By
invoking the Laplace transform with respect to time, we arrive at the
equations

W _ ZI(x) (2a)
dx

d_[(af)_ = — YV{(z) (2b)
dx
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where V(x) and / (x) are the Laplace-transformed vectors v(x, ) and
i(x, t), respectively, and Z=R-+pL and Y =G+pC. Note that the
following results hold where we assume sinusoidal excitation of the
lines, i.e., p=jw. L, C, and G will be independent of p for nondisper-
sive media, and R will usually be a function of  due to skin effect.

Since (2) represents “strongly coupled” differential equations, we
may form, by differentiating (2b) with respect to x,

T(x) = TI(x) 3)

where I' = ¥Z. The double dot (.+) notation denotes second derivative
with respect to x. Note that Z and Y being symmetric does not insure
that I is symmetric.

We first determine the eigenvalues of T from

det [y, — | = det [y, — Z¥] = 0 @)

yielding # eigenvalues of I', where I, is the #n X7 identity matrix and
det [M] denotes the determinant of the square matrix M. It is well
known (see [10] or [3], for example) that there exists an # X% non-
singular matrix function of the complex variable p, T, that trans-
forms T to the Jordan canonical form

T-ITT = 42 (5)

The #Xn matrix y? is structured in the following way [5]. If there
exist k distinct eigenvalues v, « « +, v:2(k<n), then 2 will be of
block-diagonal form with % blocks +;? on the main diagonal of dimen-
sion m, Xm;, where m, is the multiplicity of .2, Zf.im; =#n. Each .
will be block diagonal and will be composed of «(z) separate Jordan
blocks on the main diagonal ~,2%, all associated with v,%, where
j=1,+ ., a(@). Each y,;* will be of dimension #,, X#,, and will have
v:? on the main diagonal, ones on the diagonal immediately above the
main diagonal, and zeros elsewhere. It is known also [3] that y2 will
be diagonal only if #[y2,—T]=n—m,, for i=1, - + - , k, where we
denote the rank of a matrix M over the field of rational polynomials
by r[M]. If k=, then this is certainly the case, yet diagonalization
of I' is not always possible. The diagonalization of I' by a similarity
transformation as in (3) is in most cases difficult to determine and is
related to the degree of the minimal polynomial of T [3]. As an
example, suppose T is real, n=35, k=2, v2=2, v*=3, a(l) =1,
a(2)=2, =1, nua =1, and ns,=3. Then ¥® may be written as

2 00
ool
2= 10 0 ©)

yi=
lo 1J
0 3
Note that 42 is always unique within a rearrangement of the Jordan
blocks on the main diagonal.
At this point, we should note that (5) represents a change of

variables =TI, where I,, is an #X1 vector of “modal currents.”
Thus

o OO Ww o
OO W o O
S W = O

In = v¥n. )
The solution to (7) is easily shown to be
Iy = S(x, v)errat + S(x, —y)e"a” ®)

where e¥* is an n X n diagonal matrix with e* entries on the main diag-
onal, =1, - - -, k, with the same sequence as in y?, «* and &~ are
nX1 vectors of undetermined constants, and v.=+/7.%. The nX#n
matrix S(x, v) is of block-diagonal form with ZF =1 (2) blocks S, (x, )
on the main diagonal, each of which is of upper-triangular form with
ones on the main diagonal, zeros below the main diagonal, and each
block is of dimension #,,X7,,. The elements of S,,(x, v.) above the
main diagonal are linear combinations of powers of x. Each of the
blocks S, (%, v:) will be associated with the blocks ~,,;® of the Jordan
form ~2 Ogata [4] shows the structure for S$(x, v), assuming first-
order differential equations reduced to Jordan form by a similarity
transformation as in (5). For second-order equations reduced to Jor-
dan form, as we have here, a similar development can be made by
assuming the given structure for S,,(x, v.) and substituting (8) into
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(7). For example, for n,, =4, one may show
S, v.)
x ( x? X ) ( x8 x? n X ) |
271 8'}’12 8713 48‘)/13 16714 16’yi5
X x? x
A
2y, 87.* 8vi? ( )
0 0 1 il
2y,
o 0 0 1 i

The appearance of the eigenvalue v, as a denominator element of (9)
would suggest that we assume no zero eigenvalues. This is equivalent
to assuming Z and Y are nonsingular—a realistic assumption. (This
was implicitly assumed in [1].) S,,(x, v.) can also be determined for
v.=0. Note that S(x, v) is nonsingular for all x. Also note that for
diago_nal 2, S(x, 7) =],, and it may easily be shown that S(0, v) =/,
and S0, v) =—S0, —~).
Then the solutions for I and V are obtained as

I =TI, = T[S(x, v)ewa* + S(x, —y)e"a"| (10a)
and from (2b),
Ve=—Y1Y
= — YIT[S(x, y)era* + S(z, y)yera*
+ s(~Y7, _.,y)e—'yx a — S(xy —7) ye a‘] (10b)

where v is an # X# diagonal matrix with eigenvalues v, on the main
diagonal in the same sequence as in €.
Evaluating (10a) and (10b) at x =0 yields

[(0) = T[S0, v) a* + S0, —v) a”]
= T|a* + ‘?_] (11a)
V(0) = — Y'T[S(0, v) a* + S(0, v)ya*

+8(0, =7)a = S0, =) ya7]
= Y1T(S(0, %) + vt + (50, =) — v) ]

== YIT(S(0,v) + ¥)[at — a]. (11b)
Solving for a* and o~ vields

ot = 3T7(0) — §[S0, %) + v T¥V(0) (12a)

a= = 3T-U(0) + 3[S(0, ) + +| 1 T-1¥V(0). (12b)

From (10a), (10b), (12a), and (12b) we may obtain the matrix chain
parameters of a section of line as

R ek [ ed R EC

where each submatrix ®,,(x) is # X#%. Note that (2) appears analogous
to the state-variable formulation generally written as

(13)

x(l) = Ax(D) (14)

for a real-valued A matrix. Here we interpret ¢ (x) as the state-transi-
tion matrix for a complex-valued 4 matrix and f in (14) is analogous
tox in (2) [11], [41.

A considerable simplification results when 7(v,2[,—T) =n—nn,
for all ¢=1,- .-, k. In this case, ¥* will be diagonal, S(x, v)
=8S(x, —v)=1I,, and S(x, v) =n0,, where ,0. denotes the pXr zero
matrix. Then the matrix chain parameters become

®u(x) = 3Y'T(ew + e ) T-'Y = YT cosh (y2) T'¥ (15a)
®olx) = — V1Tl — ew)T-1 = — Y-1Tx sinh (v T-1  (15h)
®u(x) = — 1T(ew — e)y1T-1¥ = — Tsinh (y)y!T1Y  (150)
@u(x) = 3T(e” + ) T-1 = T cosh (yx) T (15d)

which agrees with other results [6], [9].
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The authorsin [1] appear to assume that r(y:2, —I') =#—m, for
all 1=1, , k. A correct development for distinct eigenvalues is
given, i.e., k== (although they only show the solution for a line of
infinite length). They appear to assume that the fully degenerate
case (k=1) is given by Amemiya in [7]. However, Amemiya assumes
R=G =,0, and also that CL = (1/v¢2)I,. This therefore insures that
although all eigenvalues are the same, (v.>=1/v%), 7 [v.¥[n—p?CL]}=
and I is already in diagonal Jordan form. This would correspond to
7 lossless conductors imbedded in a lossless homogeneous medium [8].
One of the main results of [1, eq. (10)] seems to be in error. The
modal matrix in {1, eq. (10)], [«] (whose columns obviously must be
eigenvectors of ZY), is shown for s =% —m equal eigenvalues with the
remaining m eigenvalues distinct.

Since [1, eq. (7) ] must be a solution to [1, eq. (1c)], it seems clear
that the structure of [«] given in [1, eq. (10)]is only valid if ZY is
partially diagonal (since [V.]in [1] is diagonal) as

mos

|
|
K E____ (16)
I
|

K*

where K is #Xm and K* is an sXs diagonal matrix with identical
scalar elements 42* on the main diagonal. This, of course, is a special
case of all possible structures of ZY.

There do exist certain practical cases where diagonalization of T’
can be shown a preori. If we neglect loss, i.e., G =R =,0,, and assume
C symmetric and positive definite and L symmetric, then one may
determine a real nonsingular transformation matrix T such that
T-irT =p*T-'CLT is diagonal. This is an application of the simul-
taneous diagonalization of two quadratic forms [10]. The assumption
of C and L being symmetric is in most cases quite acceptable and C
will be positive definite if (1) is written so that

[C.l=Ce¢+2C, and [Cy,l=—C,j=i

=1

2541
where we denote the element of C in the ith row and jth column by
[C,,], Cig is the capacitance of the 4th conductor to ground, and C,
is the mutual capacitance between conductor ¢ and conductor j. Sub-
routine NROOT in the IBM scientific subroutine package performs this
type of reduction, Then the change of variables I (x) =TI, (x) will “de-
couple” (3) with T-1=T7C"1, where we denote the transpose of a
matrix T by T7.

It is also possible to include losses if we assume R =7r(p)I, (iden-
tical conductors), G=,0,, CL=1/vs? I,, and C is symmetric, and
positive definite. Then I =pr(p)C+p%/ve2l,. The transformation
I(x) =TI,(x) such that T71CT is diagonal will decouple (3) and the
existence of T is guaranteed since C is real, symmetric.

Finally, there exist certain cyclic symmetric matrices for which
diagonalization of T does not depend upon the entries in Z and Y.
For example, if n=3 [Zu]=2Z, [Zn]=[Zn]={Za]=2, [Z1]=[Zu]
= [Zn]=2Z2", and Y has a similar structure, then there exists a simple
coordinate transformation T with [Ty,]=[Tul=1/+v/3 for 4, j
=1, 2, 3 [Tn]=[Tn]=e¢*/+/3, and [Tu]=[Twl=a/+/3 with
a=e*% and T*=T* where * denotes complex-conjugate transpose
which will diagonalize I'. This is sometimes referred to as a symmetri-
cal coordinate transformation and can be extended for n>3 [12].
This technique would apply to # wires within a conducting cylinder
arranged symmetrically about the axis

fr(vHo—T)=n—m,, foralli=1,
independent eigenvectors T, for j=1,
fying

, k, then a set of » linearly
-, m,, may be found satis-

(712[7» - r) Tf] = 01 (17)
where T;, is an #.X1 vector function of » which is also a column of T.
If r(yi¥fn—T) >n—m; for some repeated root v,2, then one may find
generalized eigenvectors which place I" in Jordan canonical form [4].
For sinusoidal excitations (p =jv), machine computation of eigen-
vectors is straightforward, although tedious if all # eigenvalues of
I are not distinct.
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On the Surface-to-Bulk Mode Conversion
of Rayleigh Waves

CHI-PIN CHANG anp HANG-SHENG TUAN

Abstract—The surface-to-bulk wave conversion phenomena oc-
curring at a discontinuity characterized by a surface contour de-
formation may be used as a means for tapping Rayleigh waves in a
nonpiezoelectric solid. For this purpose, the mode conversion prob-
lem is treated in this short paper with the use of a boundary perturba-
tion technique. A systematic procedure is obtained to calculate not
only the first-order scattered waves which include the reflected sur-
face wave and the converted bulk wave, but also the higher order
terms. With careful design of the surface contour, the converted
bulk-wave power and the direction of propagation into the substrate
may be controlled.

I. INTRODUCTION

Surface acoustic waves have received considerable attention in
recent years [1], [2]. One important application of surface waves is
in signal processing devices [3]-[5], where their use can reduce device
length by several orders of magnitude compared with their electro-
magnetic counterparts. Hence, an integration of acoustic devices
with integrated electronics is promising. One important factor which
has put these devices into practical use is the introduction of inter-
digital transducers [6], [7] which have high efficiency in exciting,
receiving, and tapping acoustic surface waves. However, inter-
digital transducers only operate on the surface of a piezoelectric crys-
tal. For devices requiring longer delay length and more taps, larger
crystals are needed, which are difficult to grow.

If a nonpiezoelectric solid is used for the main delay path in con-
nection with a piezoelectric substrate [8]-[10], there will be no
length problem, but acoustic surface waves should be tapped along
the main path by methods other than interdigital fingers. In a previ-
ous paper [11], we have studied a discontinuity problem in the hope
that we may use the surface-to-bulk wave transduction at a guiding
discontinuity for tapping Love waves. In this short paper, we treat
a similar problem for the case of Rayleigh waves. The geometry is
shown in Fig. 1. For 2<0, it is a semi-infinite nonpiezeoelectric elastic
medium with density p and Lame’s elastic constants X\, and u, where
A is reserved to denote the Rayleigh wavelength. The guiding sur-
face =0 has a region of deformation around x=0 shown by the
dotted line, while the solid line indicates a perfect surface. Consider
a Rayleigh wave incident from left to right along the x axis. A bulk
wave will be generated due to the discontinuity. It propagates into
the substrate with certain directional characteristics which depend
on the exact geometrical shape of the deformation. This bulk wave
may be detected in the bottom of the substrate if the directional
property of the beam is known. By the use of the boundary perturba-
tion technique [12], [13], the mode conversion problem is system-
atically analyzed.
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