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For this configuration and c,= 4, we have obtained

zoo = 47.75 Q, 2,, = 127.2ti.

To have an idea of the ‘precision of the potenfial calculation, we have

calculated the capacitance per unit length of the stripline by appli-

cation of Gauss’ theorem for two surfaces. The first, near the strip,
gives Cz, and the second, near theexternal walls of the box, gives CO.

We call relative precision of the calculation the ratio [C~– CO]/CZ.
Table Igivesdata forasimple line when westop the calculation

if the highest difference between the potentials of the corresponding
nodes for two successive iterations is smaller than a fixed value, called

“testl.”
Table IIgives data foramicrostrip coupler. Here, Cristhecapac-

itance calculated for a surface surrounding one of the two strips, for

instance, thepositively charged onein the odd mode. COis calculated

for a surface containing all the other conductors.
Table IIIgives results forthesame number of iterations (36) in

the case of the coupler with e,= 4.
Conversely, in Table IV, we give the results when we stop the

computation if the ‘{relative precision” is smaller than a fixed value

called “testZ.”
It should be noted that for very small differences (a few percent)

in the value of co, the number of iterations and the precision are per-

ceptibly different. This effect has been observed and justified by
some authors [20]–[24].

In Table V, asan illustration of our method against the Gauss–
Seidel one, we give the data as for Table IV, with the best accelerat-

ing factor and without the accelerating factor.

IV. CONCLUSION

From these results, it can be seen that the approximations made

forthe calculation of anaccelerating factor are very good. ln each

case we have tested, we have obtained an important amelioration

either in the computational time or in precision of calculation, often

for both.

The precision of the finite-differences method is sufficiently good,

as can be seen by comparison with results given by others.

We have used two types of results. The first ones arethoseob-

tained by Cohn’s formulas [11]. In our program, making e,=l and
N>>M, L, N,, we must approach Cohn’s case.

For example, we have obtained the following:

Z(JO Zo. zoo Zo,
(calcu- (calcu- (Cohn) (Cohn)

A4NKLN1 lated) lated)

21 101 95 6 43.3 143.7 45.6 148.8
21 101 9516 17.7 73.6 18.1 74.8
51 101 24 5 6 46.5 239.2 47.9 249.3
51 101 24 5 16 19.7 153 20.1 158.2
53 132 24 7 18 24.7 137.5 25 143.8

We have made 17 comparisons between our results and those cal-

culated using Cohn’s formula. Themean accuracy of these results is
about 2 percent.

Second, experimental results have been obtained by the Centre

National d’Etudes des T414communications, Lannion, France. Com-

parison with these results gives an accuracy of 4 or 5 percent. For

example, we have the following:

zoo Zoe z 00 ZQ.
(calcu- (calcu- (experi- (expel i-

MN KLNI lated) lated) mental) mental)
.—-— ——— ——— —_— —_— —

18 44 2 16.15

72 88 3; 4 1$ 11

16.17

115 10.05 111.3

The only point which can be noted in opposition to this method is

that for realistic problems, a computer of great capacity is necessary.
Finally, the finite-differences method appears in many aspects to

be the most simple to use for the calculations of microstrip parameters
in the TE M approximation.

This work allows a reduction of the computational time necessary

in the finite-differences method using the SOR technique of 20-60

percent according to the desired accuracy.

ACKNOWLEDGMENT

The authors wish to thank M. Niego for l-k collaboration.

REFERENCES

[1] S.P.Frankel, `'Convergence rates ofiterative treatm&nts ofpartial differential
equations, nMaih. Tables Olher Aids Com@.,vol. ,4,p. 65, 1950.

[2] D. M. Young, “Iterative methods for solving partial difference equations of
elliptlc type,” Tvans, Area’. Math. Soc., vol. 76, p, 92, 1954.

[3] S.B. Cohn, ``Shielded coupled-strip transmission fine, "lRET?an$, Microwave
,, 29138, Oct. 1955.Theo~y Tech., vol. MTT.3~pp,

[4] T. G. Bryant and J. A,,Weiss, “Parameters of microstrio transmission lines
and of courded Dams of mlcrostrin lines. ” IEEE Tmm s: M&owave Theovy Tech.
(1968 Sym>osi~m fssue), vol. M~T-16, pp. 102 l-i027, Dec. 1968.

[5] E. Yamashita and R. Mittra, “Variational method for the analysis of micro-
strip Iines, ”lEEE Trans. 14icmwave Theory Tech,, vol. MTT-16, PU. 251-256,
Apr. 1968,

[6] J. 1, Smith, “The even- and odd-mode capacitance ~arameters for coupled

MTT-19. D6. 424-431. Mav 1971.
‘ram. Microwave Theory Tech,, vol.lines in su.mended substrate, ” IEEE 1

[7] D. L. Gislfbd O, Graham “Ch&cteristic impedance andphase velocity ofa
dielectric-supported airstrip transmission line with side walls, ” IEEE Tnwts.
Microwave Theory Tech., vol. MTT-18, PP. 131-148, var. 1970.

[8] H, E, Green, “The numerical solution of some important transmission-line
problems, ” IEEE Tyans. Microwave Thew.v Tech.. vol. MTT-13, rm. 676–692.
Sept. 1965.

. .

[9] H. E. Brenner, ‘T.7sea computer todesign suspended-substrate ICs,” Mic?o-
waves, pp. 38–45, Sept. 1968.

[10] R. R. Gupta, “Accurate impedance determination of coupled TEM conduc-
tors, “ IEEE Trans. Microwave Theory Tech. (Sfiecial Issue on Com@ter-
Orie%ted Microwave Practices), >oL MTT-17, pp.47S-489, Aug. 1969.

[11] Durand, Ele.t?oslatigzw, vols, II and III. Paris, France: Masson, 1966.
[12] B. A. Carre, 'Determination of theoptimum accelerating factor for successive

over relaxation, nCom@t. J., pp. 73–7S, V01.4, 1961.
[13] W. Forsythe, Finite-Difference Methods w Part{al Differential Equations.

New York: Wiley, 1960.

On Uniform Multimode Transmission Lines

CLAYTON R. PAUL

Abstract—In a recent short paper [1], amethod for constructing

solutions to the classical uniform rnultiwire transmission-line equa-
tions was given which was intended to include the case of partial

eigenvalue degeneracy. This development appears to be incorrect

and a correct development will be given. In addition, a complete

method for constructing the matrix chain parameters of a section of

line will be presented.

We will consider n uniform transmission lines described by the
matrix partial differential equations

Ix&t)
– Ri(zt, t) – L ~($~

8% =

~i(x, t) au(x, t)—_—— – Gv(x, t) – C ~
& –

(la)

(lb)

where v (x, t) and i(x, t) are n X 1 vector functions of the transmission-
line voltages with respect to some reference conductor (usually a

ground plane) and currents, respectively, as a function of distance cc

along the line and time t. The matrices R, L, G, and C are mXtr

matrices independent of x. Nonuniform transmission lines would have
R, G, L, and C as functions of x. Usually, R is diagonal and G, L, and
C are symmetric (for lines emersed in linear, isotropic media). By
invoking the Laplace transform with respect to time, we arrive at the
equations

dV(x)

dx
— = –21(.)

dI(x)

dx
– Yv(x)

(2a)

(2b)
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where V(x) and 1(x) are the Laplace-transf ormed vectors v (x, t) and

i(x, t), respectively, and Z=R+pL and Y= G+@C. Note that the
following results hold where we assume sinusoidal excitation of the

lines, i.e., P =jo. L, C, and G will be independent of @ for nondisper-

sive media, and R will usually be a function of p due to skin effect.

Since (2) represents “strongly coupled” differential equations, we

may form, by differentiating (2b) with respect to x,

7(.x)= rl(x) (3)

where r = YZ. The double dot (.. ) notation denotes second derivative

with respect to x. Note that Z and Y being symmetric does not insure

that r is symmetric.

We first determine the eigenvalues of r from

det [Y21. – r] = det [T’fn – 2Y] = O (4)

yielding n eigenvalues of r, where 1. is the n Xn identity matrix and
det [iVI] denotes the determinant of the square matrix M. It is well
known (see [10 ] or [3], for example) that there exists an n Xn non-
singular matrix function of the complex variable p, T, that trans-

forms r to the Jordan canonical form

rlrT = y’. (5)

The n Xn matrix yz is structured in the following way [5]. If there

exist k distinct eigenvalues y~z, . , . , ~~z(k <n), then yz will be of

block-diagonal form with k blocks Y12 on the main diagonal of dimen-

sion m. Xmi, where m, is the multiplicity of Y{Z, ~~~lwi = n. Each y,z

will be block diagonal and will be composed of a (I.) separate Jordan
blocks on the main diagonal y,,z, all associated with y,z, where
j=l, . . . , a!). ~h Ytjzwill be of dimension n,, X%, and will have

T;2 on the mam diagonal, ones on the diagonal immediately above the
main diagonal, and zeros elsewhere. It is known also [3] that yz will
be diagonal only if V[T?Z. – I’] =n–m,, for i= 1, . . . , k, where we

denote the rank of a matrix M over the field of rational polynomials

by r [M]. If k = n, then this is certainly the case, yet diagonalization

of r is not always possible. The diagonalization of r by a similarity

transformation as in (5) is in most cases difficult to determine and is

related to the degree of the minimal polynomial of r [3]. As an

example, suppose r is real, ?2=5, k=2, WZ=2, YZ2=3, a(l) =1,
a(2) =2, nll = 1, n~, = 1, and n~~=3. Then y’ may be written as

20000

,2+)03, ]

03000

(6)

00031

00003

(7). For example, for n,, =4, one may show

SLj(X, ‘YL)

1
=01

%

(--

%2 i

27% 87,2 – 8yja--)
I (9)

00 1
x

27,

00 0 1 I

The appearance of the eigenvalue ~, as a denominator element of (9)

would suggest that we assume no zero eigenval ues. This is equivalent

to assuming Z and Y are nonsingular—a realistic assumption. (This
was implicitly assumed in [1 ].) S,j (x, ~,) can also be determined for

~t =0. Note that S(*, ~) is nonsingular for all x. Also note that for
diago;al y’, S(x, y) =1”, and it may easily be shown that S(O, -y) =Zn

and S(O, ~) = –S(0, –7).
Theo the solutions for Z and 1’ are obtained as

I = TIm = T[S(*, y)e~~a+ + S(I, –Y)e-~za-j (lOa)

and from (2 b),

v = – y-lz

.— Y–lTIS(X, ~)e~~ a+ + S(.r: y) Yew a+

+ S(.C,–7)e-”* a- – S(.r, – 7) ye-?” r] (lOb)

where y is an n Xn diagonal matrix with eigeuvalues y, on the main

diagonal in the same sequence as in e~-.
Evaluating (lOa) and (lOb) at x = O yields

f(o) = TIS(O, 7) a++ S(O, –7) a-l
—— T[a+ + a-] (ha)

v(o) = – Y-lT[i(o, y) a+ + S(o, y)ya+

+ S(oj –7) a- – S(o, –T)ya--]
—— — Y-’ T[(S(O, T) + Y) LL++ (S(0, –7) – Y) a-l
. ‘– Y-12’(S(O, y) + “f) [a+ – a-]. (tlb)

Solving for a+ and a- yields

~+ = +2-11(0) – gs(o, -y) + y]-lrll’v(o) (12a)

a– = + T–11(O) + + [s(0, ?) + y]–lrlYv(o). (12b)

Note that y’ is always unique within a rearrangement of the Jordan
From (lOa), (lOb), (12a), and (12b) we may obtain the matrix chain

blocks on the main diazonal.
parameters of a section of line as

At this point, we &’hould note that (5) represents a change of

variables 1 = 2’1~, where lm is an n X 1 vector of ‘(modal currents. ”

Thus

i; = y21m. (7)

The solution to (7) is easily shown to be

Im = S(*, y)ey’a+ + S(*, –y)e–~’a– (8)

where e?’ is an n X n diagonal matrix with e~;z entries on the main diag-
onal, i=l, . . . , k, with the same sequence as in Y2, a+ and a– are

n X 1 vectors of undetermined constants, and -Y,= <~. The n Xn

matrix S(.X, -y) is of block-diagonal form with Z$=la(t) blocks St, (x, T,)
on the main diagonal, each of which is of upper-triangular form with

ones on the main diagonal, zeros below the main diagonal, and each

block is of dimension n,, Xn,,. The elements of S,, (x, y,) above the

main diagonal are linear combinations of powers of x. Each of the
blocks S,, (.x, -r,) will be associated with the blocks -r,~z Of the J Ordal~
form yz. Ogata [4] shows the structure for S(x, y), assuming first-
order cliff erential equations reduced to Jordan form by a similarity
transformation as in (5). For second-order equations reduced to J or-
dan form, as we have here, a similar development can be made by
assuming the given structure for Stj (x, -Y,) and substituting (8) into

[%1’ [ M :!;11%1 = [’w%] ’13)

where each submatrix O,J (x) is n Xn. Note that (2) appears analogous
to the state-variable formulation generally written as

x(f)= .4X(t) (14)

for a real-valued A matrix. Here we interpret $ (.x) as the state-transi-
tion matrix for a complex-valued A matrix and f in (1-!) is analogous

toxin (2) [11], [4].

A considerable simplification results when r(y,21~ — r) = n — w,,

for all i=l, . . ., k. In this case, yz will be diagonal, S(x, ~)

= S(x, –-y) = In, and S(x, y) = mOm,where ,0, denotes the @X? zero
matrix. Then the matrix chain parameters become

QII(J) = +Y-lT(e~’ + e–7z)~1Y = Y–IT cosh (Y*) T-lY (15a)

CD,,(X) = – 4Y–lTY(EWZ — e–w)!Pl = – Y-1!7’Y sinh (Y.~) P1 (15b)

@u(x) = – ~T(e~’ – e-~’) y–l~lY = – T sinh (yx) y-17Y1Y (1 SC)

which agrees with other results [6], [9].
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The authorsin [1] appear toassume that ~(T~21. –r)=ts-m, for

alli= l,..., k. A correct development for distinct eigenvalues is
given, i.e., k=n (although they only show thesolution fora line of

infinite length). They appear to assume that the fully degenerate

case (k = 1) is given by Amemiya in [7 ]. However, Amemiya assumes
R = G = nOn and also that CL= (1 /uo’)In. This therefore insures that

although all eigenvalues are the same, (-y,z = 1}~~z), r [7,21. —pzCL] = O

and r is already in diagonal Jordan form. This would correspond to
a Iossless conductors imbedded in a lossless homogeneous medium [8].
One of the main results of [1, eq. (10)] seems to be in error. The
modal matrix in [1, eq. (10) ], [a] (whose columns obviously must be

eigenvectors of ZY), is shown for s = n — m equal eigenvalues with the
remaining m eigenvalues distinct.

Since [1, eq. (7)] must be a solution to [1, eq. (lc) ], it seems clear

that the structure of [a] given in [1, eq. (10)] is only valid if ZY is

partially diagonal (since [ V,, ] in [1] is diagonal) as

[:1
om,

ZY = K :––––

i K*

(16)

where K is n Xwz and K* is an s Xs diagonal matrix with identical
scalar elements ~Z* on the main diagonal. This, of course, is a special

case of all possible structures of ZY.
There do exist certain practical cases where diagonalization of r

can be shown a ptzori. If we neglect loss, i.e., G = R = nOn, and assume
C symmetric and positive definite and L symmetric, then one may

determine a real nonsingular transformation matrix T such that

2’-1 rT =@2’1-lCLT is diagonal. This is an application of the simul-

taneous diagonalization of two quadratic forms [10]. The assumption

of C and L being symmetric is in most cases quite acceptable and C
will be positive definite if (1) is written so that

[c,,] = C*G + ~ C,, and [c,, ] = – C,, j # i
,=1
J*<

where we denote the element of C in the ith row and jth column by

[C,, ], Ct~ is the capacitance of the ith conductor to ground, and C{,
is the mutual capacitance between conductor i and conductor j. Sub-

routine NROOT in the I B M scientific subroutine package performs this

type of reduction. Then the change of variables 1(x) = Tin(x) will “de-

couple” (3) with ~1 = P“C-l) where we denote the transpose of a

matrix T by 2’~.

It is also possible to include losses if we assume R = r(p)Z. (iden-

tical conductors), G = mO., CL= 1/Z02 lm, and C is symmetric, and
positive definite. Then r =@@) C+p2/rr021.. The transformation
1(x) = TZ~(x) such that ~lCT is diagonal will decouple (3) and the
existence of T is guaranteed since C is real, symmetric.

Finally, there exist certain cyclic symmetric matrices for which
diagonalization of r does not depend upon the entries in Z and Y.
For example, if n =3 [2;,] =Z, [Zl~] = [ZZ~] = [231]= Z’, [213]= [ZZI ]

= [Z3.Z] =2”, and Y has a similar structure, then there exists a simple
coordinate transformation T with [TIJ ] = [T,l ] = 1/ti3 for i j

=1, 2, 3 [T22] = [Tis] =a2/~3, and [T,,]= [TS,] =a/v’3 with
a = eI ‘“/3 and T– 1= T*, where * denotes complex-conjugate transpose

which will diagonalize r. This is sometimes referred to as a symmetri-

cal coordinate transformation and can be extended for n >3 [12 ].

This technique would apply to n wires within a conducting cylinder

arranged symmetrically about the axis.
If ?(7t21fi-r) =n–m., foralli=l, . . . , k, then a set of nlinear]y

independent eigenvectors T,j, for j = 1, . . . , r-n,, may be found satis-

fying

(?,21. – r) i“,, = .O1 (17)

where 2’~~is an n X 1 vector function of @which is also a column of T.
If ~(Y/Z. – 1“) >n –WG for some repeated root ~,’, then one may find

generalized eigenvectors which place r in Jordan canonical form [4].
For sinusoidal excitations (p =jco), machine computation of eigen-

vectors is straightforward, although tedious if all n eigenvalues of
r are not distinct.
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On the Surface-to-Bulk Mode Conversion

of Rayleigh Waves

CHI-PIN CHANG AND HANG-SHENG TUAN

Abstract—The 8urface-to-bulk wave conversion phenomena oc-

curring at a discontinuity characterized by a surface contour de-

formation may be used as a means for tapping Rayleigh waves in a

nonpiezoelectric solid. For thks purpose, the mode conversion prob-

lem is treated in this short paper with the use of a boundary perturba-

tion technique. A systematic procedure is obtained to calculate not

only the first-order scattered waves which include the reflected sur-
face wave and the converted bulk wave, but also the higher order
terms. With careful design of the surface contour, the converted
bulk-wave power and the direction of propagation into the substrate
may be controlled.

1. INTRODUCTION

Surface acoustic waves have received considerable attention in

recent years [1 ], [2]. One important application of surface waves is

in signal processing devices [3 ]– [5], where their use can reduce device

length by several orders of magnitude compared with their electro-

magnetic counterparts. Hence, an integration of acoustic devices

with integrated electronics is promising. One important factor which

has put these devices into practical use is the introduction of inter-

digitai transducers [6], [7] which have high efficiency in exciting,
receiving, and tapping acoustic surface waves. However, inter-
digital transducers on] y operate on the surface of a piezoelectric crYs-
tal. For devices requiring longer delay length and more taps, larger
crystals are needed, which are difficult to grow.

If a nonpiezoelectric solid is used for the main delay path in con-
nection with a piezoelectric substrate [8 ]– [10 ], there will be no
length problem, but acoustic surface waves should be tapped along

the main path by methods other than interdigital fingers. In a previ-

ous paper [11 ], we have studied a discontinuity problem in the hope
that we may use the surface-to-bulk wave transduction at a guiding

discontinuity for tapping Love waves. In this short paper, we treat

a similar problem for the case of Rayleigh waves. The geometry is

shown in Fig. 1. For z~O, it is a semi-infinite nonpiezeoelectric elastic

medium with density p and Lame’s elastic constants & and p, where
~ is reserved to denote the Rayleigh wavelength. The guiding sur-
face z = O has a region of deformation around x = O shown by the

dotted line, while the solid line indicates a perfect surface. Consider
a Rayleigh wave incident from left to right along the x axis. A bulk
wave will be generated due to the discontinuity. It propagates into
the substrate with certain directional characteristics which depend

on the exact geometrical shape of the deformation. This bulk wave
may be detected in the bottom of the substrate if the directional
property of the beam is known. By the use of the boundary perturba-

tion technique [12 ], [13], the mode conversion problem is system-

atically analyzed.
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